Low-Latency Digit-Serial Systolic Double Basis Multiplier over $\mbi GF{(2^m})$ Using Subquadratic Toeplitz Matrix-Vector Product Approach

نویسندگان

  • Jeng-Shyang Pan
  • Reza Azarderakhsh
  • Mehran Mozaffari Kermani
  • Chiou-Yng Lee
  • Wen-Yo Lee
  • Che Wun Chiou
  • Jim-Min Lin
چکیده

Recently, the multipliers with subquadratic space complexity for trinomials and some specific pentanomials have been proposed. For such kind of multipliers, alternatively, we use double basis multiplication which combines the polynomial basis and the modified polynomial basis to develop a new efficient digit-serial systolic multiplier. The proposed multiplier depends on trinomials and almost equally space pentanomials (AESPs), and utilizes the subquadratic Toeplitz matrix-vector product scheme to derive a low-latency digit-serial systolic architecture. If the selected digit-size is d bits, the proposed digit-serial multiplier for both polynomials, i.e., trinomials and AESPs, requires the latency of 2 ⌈√ m d ⌉ , while traditional ones take at least O( ⌈ m d ⌉ ) clock cycles. Analytical and application-specific integrated circuit (ASIC) synthesis results indicate that both the area and the time×area complexities of our proposed architecture are significantly lower than the existing digit-serial systolic multipliers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Complexity Parallel Systolic Montgomery Multipliers over GF(2m) Using Toeplitz Matrix-Vector Representation

In this paper, a generalized Montgomery multiplication algorithm in GF(2m) using the Toeplitz matrix-vector representation is presented. The hardware architectures derived from this algorithm provide low-complexity bit-parallel systolic multipliers with trinomials and pentanomials. The results reveal that our proposed multipliers reduce the space complexity of approximately 15% compared with an...

متن کامل

Toeplitz matrix-vector product based GF(2n) shifted polynomial basis multipliers for all irreducible pentanomials

Besides Karatsuba algorithm, optimal Toeplitz matrix-vector product (TMVP) formulae is another approach to design GF (2) subquadratic multipliers. However, when GF (2) elements are represented using a shifted polynomial basis, this approach is currently appliable only to GF (2)s generated by all irreducible trinomials and a special type of irreducible pentanomials, not all general irreducible p...

متن کامل

Comment on "Subquadratic Space-Complexity Digit-Serial Multipliers Over GF(2m) Using Generalized (a, b)-Way Karatsuba Algorithm"

Karatsuba algorithm (KA) is popularly used for high-precision multiplication by a divide-and-conquer approach. Recently, subquadratic digit-serial multiplier based on (a, 2)way KA decomposition is proposed in [1]. In this paper, we extend a (a, 2)-way KA to derive a generalized (a, b)-way KA decomposition with a 6= b. We have shown that (a, 2)-way KA and mult-way KA are special cases of the pro...

متن کامل

Subquadratic Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation

We study Dickson bases for binary field representation. Such representation seems interesting when no optimal normal basis exists for the field. We express the product of two elements as Toeplitz or Hankel matrix vector product. This provides a parallel multiplier which is subquadratic in space and logarithmic in time.

متن کامل

Scalable and systolic Montgomery multiplier over GF(2m) generated by trinomials

A Montgomery’s algorithm in GF(2) based on the Hankel matrix–vector representation is proposed. The hardware architecture obtained from this algorithm indicates low-complexity bit-parallel systolic multipliers with irreducible trinomials. The results reveal that the proposed multiplier saves approximately 36% of space complexity as compared to an existing systolic Montgomery multiplier for trin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Computers

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2014